
Operating Systems (Fall/Winter 2018)

Synchronization: Another Perspective

Yajin Zhou (http://yajin.org)

Zhejiang University

Credit: https://cs61.seas.harvard.edu/site/2018/

http://yajin.org

Stephen Chong, Harvard University 4

Interleaved Execution

• The execution of the two threads can be interleaved

• Assume preemptive scheduling

• i.e., Thread may be context switched arbitrarily, without cooperation from the thread

• Each thread may context switch after each assembly instruction
 (or, in some cases, part of an assembly instruction!)

• We need to worry about the worst-case scenario!

• What’s the account balance after this sequence?
• And who's happier, the bank or you???

Execution sequence
as seen by CPU

 balance = get_balance(account);
 balance -= amount;

 balance = get_balance(account);
 balance -= amount;
 put_balance(account, balance);

 put_balance(account, balance);

local balance = $1400

local balance = $1400

account.bal = $1400

account.bal = $1400

account.bal = $1500

Stephen Chong, Harvard University

Little white lie...

5

int i = 0; // global variable
void bar() {
 i++;
 sleep(1);
 printf("i is %d.\n", i);
}

int i = 0; // global variable
void bar() {
 i++;
 sleep(1);
 printf("i is %d.\n", i);
}

•Sleeping does not help!
•Earlier I showed some examples to highlight

which locations were shared between threads

•Possible outputs: 1 2, 1 2, 2 2, 2 2
•All are possible, not all equally likely.

Stephen Chong, Harvard University 10

Race Conditions

• The problem: concurrent threads accessing a shared resource
without any synchronization
• This is called a race condition

• The result of the concurrent access is non-deterministic, depends on
• Timing

• When context switches occurred

• Which thread ran at which context switch

• What the threads were doing

• A solution: mechanisms for controlling concurrent access to
shared resources
• Allows us to reason about the operation of programs

• We want to re-introduce some determinism into the execution of multiple
threads

Stephen Chong, Harvard University

Race conditions in real life

•Race conditions are bugs, and difficult to detect

•Northeast Blackout of 2003
•About 55 million people in

North America affected

•Race condition in monitoring code
in part responsible: alarm system
failed

•Code had been running since 1990,
over 3 million hours of operation,
without manifesting bug

11

V
in

ce
nt

 L
af

or
et

Stephen Chong, Harvard University

Race conditions in real life

•Race conditions are bugs, and difficult to detect

•Therac-25 radiation therapy machine
•Designed to give non-lethal doses of radiation to cancer

patients

•Race conditions contributed
to incorrect lethal doses

•Several fatalities in mid-80s.

12

Stephen Chong, Harvard University 13

Which resources are shared?

• Local variables in a function are not shared
• They exist on the stack, and each thread has its own stack

• Cannot safely pass a pointer from a local variable to another thread
• Why?

• Global variables are shared
• Stored in static data portion of the

address space

• Accessible by any thread

• Dynamically-allocated data
is shared
• Stored in the heap, accessible

by any thread

OS memory

Read/write segment
.data, .bss

Read-only segment
.text, .rodata

unused

Shared libraries

Heap (used by malloc)

Stack for thread 0

0x00000000

 0x08048000

0xc0000000

0x40000000

Stack pointer for thread 0

PC for thread 2

0xffffffff

Stack for thread 1

Stack for thread 2

Stack pointer for thread 1

Stack pointer for thread 2

PC for thread 0
PC for thread 1

Stephen Chong, Harvard University 15

Mutual Exclusion

• We want to use mutual exclusion to synchronize access to shared
resources
• Mutual exclusion: only one thread can access a shared resource at a time.

• Code that uses mutual exclusion to synchronize its execution is
called a critical section

• Only one thread at a time can execute code in the critical section

• All other threads are forced to wait on entry

• When one thread leaves the critical section, another can enter

Critical Section

Thread 1
(modify account balance)

Stephen Chong, Harvard University 16

Mutual Exclusion

• We want to use mutual exclusion to synchronize access to shared
resources
• Mutual exclusion: only one thread can access a shared resource at a time.

• Code that uses mutual exclusion to synchronize its execution is
called a critical section

• Only one thread at a time can execute code in the critical section

• All other threads are forced to wait on entry

• When one thread leaves the critical section, another can enter

Critical Section

Thread 1
(modify account balance)

Thread 1 enters
critical section

Thread 2
Thread 2 must wait for
critical section to clear

Stephen Chong, Harvard University 17

Mutual Exclusion

• We want to use mutual exclusion to synchronize access to shared
resources
• Mutual exclusion: only one thread can access a shared resource at a time.

• Code that uses mutual exclusion to synchronize its execution is
called a critical section

• Only one thread at a time can execute code in the critical section

• All other threads are forced to wait on entry

• When one thread leaves the critical section, another can enter

Critical Section

Thread 1
(modify account balance)

Thread 1 leaves
critical section

Thread 2

Thread 2 allowed to
enter critical section

Stephen Chong, Harvard University 18

Critical Section Requirements

• Mutual exclusion
• At most one thread is currently executing in the critical section

• Progress
• If thread T1 is outside the critical section, then T1 cannot prevent T2

from entering the critical section

• Bounded waiting (no starvation)
• If thread T1 is waiting on the critical section, then T1 will eventually enter

the critical section
• Requires threads eventually leave critical sections

• Performance
• The overhead of entering and exiting the critical section is small with

respect to the work being done within it

Stephen Chong, Harvard University 20

Locks

• A lock is an object (in memory) that provides two operations:
• acquire(): a thread calls this before entering a critical section
• May require waiting to enter the critical section

• release(): a thread calls this after leaving a critical section
• Allows another thread to enter the critical section

• A call to acquire() must have corresponding call to
release()
• Between acquire() and release(), the thread holds the lock

• acquire() does not return until the caller holds the lock
• At most one thread can hold a lock at a time (usually!)

• We'll talk about the exceptions later...

•What can happen if acquire() and release() calls are not
paired?

•Why is the return statement outside of the
critical section?

Stephen Chong, Harvard University 21

Using Locks

critical section

int withdraw(account, amount) {
 acquire(lock);
 balance = get_balance(account);
 balance -= amount;
 put_balance(account, balance);
 release(lock);
 return balance;
}

int withdraw(account, amount) {
 acquire(lock);
 balance = get_balance(account);
 balance -= amount;
 put_balance(account, balance);
 release(lock);
 return balance;
}

Stephen Chong, Harvard University 22

Execution with Locks

Thread 1 runs

Thread 2 waits on lock

Thread 1 completes
Thread 2 resumes

 acquire(lock);
 balance = get_balance(account);
 balance -= amount;

 balance = get_balance(account);
 balance -= amount;
 put_balance(account, balance);
 release(lock);

Execution sequence
as seen by CPU

 put_balance(account, balance);
 release(lock);

 acquire(lock);

Stephen Chong, Harvard University 23

Spinlocks

•Very simple way to implement a lock:
struct lock {
 int held = 0;
}
void acquire(lock) {
 while (lock->held)
 ;
 lock->held = 1;
}
void release(lock) {
 lock->held = 0;
}

The caller busy waits
for the lock to be
released

struct lock {
 int held = 0;
}
void acquire(lock) {
 while (lock->held)
 ;
 lock->held = 1;
}
void release(lock) {
 lock->held = 0;
}

Why doesn't this work?

Stephen Chong, Harvard University 24

Implementing Spinlocks

• Problem: internals of the lock acquire/release have critical sections
too!

• The acquire() and release() actions must be atomic

• Atomic means that the code cannot be interrupted during execution
• “All or nothing” execution

struct lock {
 int held = 0;
}
void acquire(lock) {
 while (lock->held)
 ;
 lock->held = 1;
}
void release(lock) {
 lock->held = 0;
}

struct lock {
 int held = 0;
}
void acquire(lock) {
 while (lock->held)
 ;
 lock->held = 1;
}
void release(lock) {
 lock->held = 0;
}

What can happen if there
is a context switch here?

Stephen Chong, Harvard University 25

Implementing Spinlocks

• Problem: internals of the lock acquire/release have critical sections
too!

• The acquire() and release() actions must be atomic

• Atomic means that the code cannot be interrupted during execution
• “All or nothing” execution

struct lock {
 int held = 0;
}
void acquire(lock) {
 while (lock->held)
 ;
 lock->held = 1;
}
void release(lock) {
 lock->held = 0;
}

struct lock {
 int held = 0;
}
void acquire(lock) {
 while (lock->held)
 ;
 lock->held = 1;
}
void release(lock) {
 lock->held = 0;
}

This sequence needs
to be atomic!

Stephen Chong, Harvard University 26

Implementing Spinlocks

•Achieving atomicity requires hardware support
•Disabling interrupts
• Prevent context switches from occurring
•Only works on uniprocessors. Why?

•Atomic instructions – CPU guarantees entire action
will execute atomically
• Test-and-set
•Compare-and-swap

Stephen Chong, Harvard University 27

Spinlocks using test-and-set

•CPU provides the following as one atomic instruction:

•So to fix our broken spinlocks, we do this:

bool test_and_set(bool *flag) {
 bool old = *flag;
 *flag = True;
 return old;
}

struct lock {
 int held = 0;
}
void acquire(lock) {
 while(test_and_set(&lock->held));
}
void release(lock) {
 lock->held = 0;
}

Stephen Chong, Harvard University 28

What's wrong with spinlocks?

•So spinlocks work (if you implement them
correctly), and are simple.

•What's the catch?

struct lock {
 int held = 0;
}
void acquire(lock) {
 while(test_and_set(&lock->held));
}
void release(lock) {
 lock->held = 0;
}

Stephen Chong, Harvard University 29

Problems with spinlocks

•Inefficient!
•Threads waiting to acquire locks spin on the CPU

•Eats up lots of cycles, slows down progress of other threads
•Note that other threads can still run ... how?

•What happens if you have a lot of threads trying to acquire
the lock?

•Usually, spinlocks are only used as primitives to
build higher-level, more efficient, synchronization
constructs

Stephen Chong, Harvard University 30

Efficiently implementing locks

• Really want a thread waiting to enter a critical section to block

• Put the thread to sleep until it can enter the critical section

• Frees up the CPU for other threads to run

Lock wait queue

Lock state

1) Check lock state

Thread 1

unlocked

?

Stephen Chong, Harvard University 31

Efficiently implementing locks

• Really want a thread waiting to enter a critical section to block

• Put the thread to sleep until it can enter the critical section

• Frees up the CPU for other threads to run

Lock wait queue

Lock state

1) Check lock state

Thread 1

locked

2) Set state to locked

3) Enter critical section

Stephen Chong, Harvard University 32

Efficiently implementing locks

• Really want a thread waiting to enter a critical section to block

• Put the thread to sleep until it can enter the critical section

• Frees up the CPU for other threads to run

Lock wait queue

Lock state

Thread 1

locked

Thread 2

1) Check lock state
?

2) Add self to wait queue (sleep)

Stephen Chong, Harvard University 33

Efficiently implementing locks

• Really want a thread waiting to enter a critical section to block

• Put the thread to sleep until it can enter the critical section

• Frees up the CPU for other threads to run

Lock wait queue

Lock state

Thread 1

locked

Thread 2

1) Check lock state

2) Add self to wait queue (sleep)

ZZ Z

Stephen Chong, Harvard University 34

Efficiently implementing locks

• Really want a thread waiting to enter a critical section to block

• Put the thread to sleep until it can enter the critical section

• Frees up the CPU for other threads to run

Lock wait queue

Lock state

Thread 1

locked

Thread 3

1) Check lock state
?

Thread 2

ZZ Z

2) Add self to wait queue (sleep)

Stephen Chong, Harvard University 35

Efficiently implementing locks

• Really want a thread waiting to enter a critical section to block

• Put the thread to sleep until it can enter the critical section

• Frees up the CPU for other threads to run

Lock wait queue

Lock state

Thread 1

locked

Thread 2

1) Check lock state

2) Add self to wait queue (sleep)

ZZ Z

Thread 3

ZZ Z

Stephen Chong, Harvard University 36

Efficiently implementing locks

• Really want a thread waiting to enter a critical section to block

• Put the thread to sleep until it can enter the critical section

• Frees up the CPU for other threads to run

Lock wait queue

Lock state

Thread 1

locked

Thread 2

ZZ Z

Thread 3

ZZ Z

1) Thread 1 finishes critical section

Stephen Chong, Harvard University 37

Efficiently implementing locks

• Really want a thread waiting to enter a critical section to block

• Put the thread to sleep until it can enter the critical section

• Frees up the CPU for other threads to run

Lock wait queue

Lock state

Thread 2

ZZ Z

unlocked

Thread 3

ZZ Z

A blocked thread can now acquire lock

Stephen Chong, Harvard University 38

Efficiently implementing locks

• Really want a thread waiting to enter a critical section to block

• Put the thread to sleep until it can enter the critical section

• Frees up the CPU for other threads to run

Lock wait queue

Lock state

Thread 3

Thread 2

ZZ Z

A blocked thread can now acquire lock

locked

No guarantee on which blocked
thread will get the lock!!!

Stephen Chong, Harvard University 39

Locks in PThreads

• Pthreads provides a pthread_mutex_t to represent a lock for
mutual exclusion, a mutex.
• Threads using the mutex must have access to the pthread_mutex_t object.

• Usually, this means declaring it as a global variable.

pthread_mutex_t myLock; /* Must be global so all
 * threads using the lock
 * can access this variable. */

/* Initialize it. */
/* Only one thread has to do this. */
pthread_mutex_init(&myLock, NULL);

void *mythread(void *arg) {
 /* Do something with the lock */
 pthread_mutex_lock(&myLock);

 /* Do stuff... */

 pthread_mutex_unlock(&myLock);
}

Stephen Chong, Harvard University

Lock granularity

• Locks are great, and simple, but have limitations
• What if you have a more complex resource than a single

location?

• Coarse-grained lock: Could use one lock to protect all resources
• E.g., Many bank accounts, use one lock to protect access to all accounts

• Fine-grained lock: Protect each resource with a separate lock
• E.g., Many bank accounts, one lock per account

• Coarse vs. fine-grained?
• More locks → harder to manage locks
• E.g., transfer money from account A to account B at same time as transferring

from B to A. What order to acquire locks?
• More on this next week...

• Fewer locks → less concurrency
40

